11106 measured reflections

 $R_{\rm int} = 0.046$

3994 independent reflections

2014 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1H-1,2,3-Benzotriazol-1-yl)-1-benzoylethyl 4-methylbenzoate

Wu-Lan Zeng,* Yun-Chen Zhang and Yi-Ming Hong

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: wulanzeng@163.com

Received 31 May 2007; accepted 24 July 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.140; data-to-parameter ratio = 15.2.

In the crystal structure of the title compound, $C_{23}H_{19}N_3O_3$, molecules are linked into chains parallel to the c axis by C-H...O hydrogen bonds. Adjacent chains are assembled into two-dimensional layers via C-H···N hydrogen bonds. The packing is further stabilized by $\pi - \pi$ interactions between triazole and phenyl rings.

Related literature

For a general background on the pharmacological activities of benzotriazoles, see: Chen & Wu (2005). For related literature, see: Allen et al. (1987).

Experimental

Crystal data

N a

h

$C_{23}H_{19}N_3O_3$	$V = 3897.3 (13) \text{ Å}^3$
$A_r = 385.41$	Z = 8
Aonoclinic, $C2/c$	Mo $K\alpha$ radiation
= 20.376 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
= 19.648 (4) Å	T = 294 (2) K
= 10.213 (2) Å	$0.22 \times 0.18 \times 0.12 \text{ mm}$
$B = 107.605 \ (4)^{\circ}$	

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.981, T_{\max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	263 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
3994 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4 - H4 \cdots O1^{i}$	0.93	2.50	3.157 (3)	128
$C7 - H7A \cdots N2^{ii}$	0.97	2.59	3.560 (3)	176
C18−H18· · ·O3 ⁱⁱⁱ	0.93	2.51	3.317 (3)	145
	1	1 1		

Symmetry codes: (i) $x, -y, z + \frac{1}{2}$, (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$; (iii) -x, -y, -z + 1.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2151).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen Germany
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, o3715 [doi:10.1107/S1600536807036331]

2-(1H-1,2,3-Benzotriazol-1-yl)-1-benzoylethyl 4-methylbenzoate

W.-L. Zeng, Y.-C. Zhang and Y.-M. Hong

Comment

1*H*-Benzotriazole and its derivatives are an important class of compounds because they exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005). We report here the synthesis and crystal structure of the title compound as part of our ongoing studies on new benzotriazole compounds with higher bioactivity.

In the title compound (Fig. 1), all bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The benzotriazole ring system is essentially planar, with a dihedral angle of 2.67 (1)° between the triazole ring (atoms N1—N3/C1/C6) and the benzene ring (C1—C6). The dihedral angles between the mean planes of the benzotriazole system and the six-membered aromatic rings C10—C15 and C17—C22 are 6.85 (1) and 66.06 (1)°, respectively. The dihedral angle between these two latter rings is 61.7 (2)°. In the crystal structure, intermolecular C—H···O hydrogen bonds (Table1) link the molecules into chains running parallel to the *c* axis. Adjacent chains are assembled into two-dimensional layers *via* C—H···N hydrogen bonds (Fig. 2). The packing is further stabilized by π ··· π interactions occurring between symmetry-related triazole and phenyl rings [*Cg*1···*Cg*2ⁱ = 3.578 (3) Å; perpendicular interplanar distance = 3.568 (3) Å; *Cg*1 and *Cg2* are the centroids of the N1—N3/C1/C6 triazole ring and C10—C15 phenyl ring, respectively; symmetry code: (i) 1/2 - x, 1/2 - y, 2 - z].

Experimental

Bromine (3.2 g, 0.02 mol) was added dropwise to a solution of 3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-phenylpropan-1-one (5.0 g, 0.02 mol) and sodium acetate (1.6 g, 0.02 mol) in acetic acid (50 ml). The reaction proceeded for 7 h. Water (50 ml) and chloroform (20 ml) were then added. The organic layer was washed successively with a saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and the chloroform solution filtered. This fraction was cooled with ice-water, then a solution of 4-methylbenzoic acid (2.7 g, 0.02 mol) in acetone (10 ml) and triethylamine (2.8 ml) was added. The mixture was stirred with ice-water for about 6 h. The solution was then filtered and concentrated. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone-ethylacetate (1:1 v/v) solution at room temperature over a period of one week.

Refinement

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for the methyl group.

Figures

Fig. 1. The molecular structure of title compound with 30% probability ellipsoids.

Fig. 2. Packing diagram of the title compound viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.

2-(1H-1,2,3-Benzotriazol-1-yl)-1-benzoylethyl 4-methylbenzoate

Crystal data	
C ₂₃ H ₁₉ N ₃ O ₃	$F_{000} = 1616$
$M_r = 385.41$	$D_{\rm x} = 1.314 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1885 reflections
a = 20.376 (4) Å	$\theta = 2.3 - 22.6^{\circ}$
b = 19.648 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 10.213 (2) Å	T = 294 (2) K
$\beta = 107.605 \ (4)^{\circ}$	Block, colourless
$V = 3897.3 (13) \text{ Å}^3$	$0.22\times0.18\times0.12~mm$
Z = 8	

Data collection

Siemens SMART CCD area-detector diffractometer	3994 independent reflections
Radiation source: fine-focus sealed tube	2014 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.046$
T = 294(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 25$
$T_{\min} = 0.981, \ T_{\max} = 0.989$	$k = -24 \rightarrow 20$
11106 measured reflections	$l = -12 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^{2} > 2\sigma(F^{2})] = 0.049$ H-atom parameters constrained $wR(F^{2}) = 0.140$ $WR(F^{2}) = 0.140$ $W = 1/[\sigma^{2}(F_{o}^{2}) + (0.063P)^{2} + 0.064P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ S = 1.00 $(\Delta/\sigma)_{max} = 0.004$ 3994 reflections $\Delta\rho_{max} = 0.26$ e Å⁻³ 263 parameters $\Delta\rho_{min} = -0.17$ e Å⁻³ Primary atom site location: structure-invariant direct

Primary atom site location: structure-invariant direct Extinction emethods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displ	lacement	parameters	(Å	2)
				1		1	1	1		1	1	

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.20658 (8)	0.12677 (8)	0.70219 (18)	0.0703 (5)
O2	0.14502 (7)	0.05617 (7)	0.86281 (16)	0.0550 (4)
03	0.05904 (9)	0.06461 (9)	0.6674 (2)	0.0879 (6)
N1	0.36982 (10)	0.14012 (10)	1.0086 (2)	0.0598 (5)
N2	0.30975 (10)	0.16959 (9)	0.9822 (2)	0.0581 (5)
N3	0.26645 (9)	0.12819 (9)	1.02305 (18)	0.0471 (5)
C1	0.36587 (11)	0.07846 (11)	1.0694 (2)	0.0475 (6)
C2	0.41650 (11)	0.02937 (13)	1.1214 (3)	0.0624 (7)
H2	0.4608	0.0342	1.1146	0.075*
C3	0.39807 (13)	-0.02585 (13)	1.1825 (3)	0.0703 (8)
Н3	0.4306	-0.0596	1.2180	0.084*
C4	0.33142 (12)	-0.03349 (12)	1.1938 (3)	0.0648 (7)
H4	0.3213	-0.0718	1.2377	0.078*
C5	0.28111 (11)	0.01386 (11)	1.1421 (2)	0.0538 (6)
Н5	0.2368	0.0086	1.1482	0.065*
C6	0.30000 (10)	0.07063 (10)	1.0794 (2)	0.0431 (5)
C7	0.19630 (11)	0.14953 (11)	1.0045 (2)	0.0542 (6)
H7A	0.1953	0.1987	1.0130	0.065*
H7B	0.1808	0.1300	1.0773	0.065*
C8	0.14636 (11)	0.12887 (11)	0.8666 (2)	0.0519 (6)
H8	0.1003	0.1457	0.8609	0.062*
C9	0.16798 (11)	0.15841 (12)	0.7499 (2)	0.0524 (6)
C10	0.14402 (11)	0.22827 (11)	0.7005 (2)	0.0500 (6)
C11	0.18920 (13)	0.27258 (14)	0.6695 (3)	0.0662 (7)

H11	0.2345	0.2593	0.6824	0.079*
C12	0.16787 (18)	0.33635 (15)	0.6197 (3)	0.0817 (9)
H12	0.1990	0.3665	0.6008	0.098*
C13	0.1012 (2)	0.35565 (15)	0.5977 (3)	0.0873 (10)
H13	0.0868	0.3988	0.5632	0.105*
C14	0.05536 (15)	0.31160 (16)	0.6266 (3)	0.0809 (9)
H14	0.0097	0.3245	0.6106	0.097*
C15	0.07713 (12)	0.24794 (13)	0.6795 (3)	0.0642 (7)
H15	0.0463	0.2183	0.7009	0.077*
C16	0.09767 (11)	0.02871 (13)	0.7527 (3)	0.0605 (7)
C17	0.09855 (10)	-0.04588 (12)	0.7526 (2)	0.0522 (6)
C18	0.05402 (11)	-0.08051 (14)	0.6424 (2)	0.0627 (7)
H18	0.0250	-0.0563	0.5694	0.075*
C19	0.05285 (12)	-0.15056 (14)	0.6412 (3)	0.0636 (7)
H19	0.0227	-0.1730	0.5670	0.076*
C20	0.09510 (12)	-0.18837 (13)	0.7469 (3)	0.0597 (7)
C21	0.13932 (12)	-0.15321 (13)	0.8558 (3)	0.0611 (6)
H21	0.1684	-0.1776	0.9284	0.073*
C22	0.14135 (12)	-0.08347 (12)	0.8595 (2)	0.0597 (7)
H22	0.1716	-0.0613	0.9340	0.072*
C23	0.09377 (14)	-0.26485 (13)	0.7461 (3)	0.0859 (9)
H23A	0.1385	-0.2819	0.7507	0.129*
H23B	0.0607	-0.2806	0.6632	0.129*
H23C	0.0812	-0.2809	0.8241	0.129*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0719 (11)	0.0785 (12)	0.0655 (12)	0.0248 (9)	0.0282 (10)	0.0047 (9)
O2	0.0508 (9)	0.0517 (10)	0.0530(11)	-0.0020(7)	0.0011 (8)	0.0017 (8)
03	0.0787 (13)	0.0800 (13)	0.0767 (14)	-0.0005 (10)	-0.0187 (10)	0.0139 (11)
N1	0.0540 (12)	0.0652 (14)	0.0566 (14)	-0.0139 (10)	0.0112 (10)	0.0065 (10)
N2	0.0613 (13)	0.0522 (12)	0.0573 (14)	-0.0143 (10)	0.0124 (10)	0.0042 (10)
N3	0.0496 (11)	0.0458 (11)	0.0425 (12)	-0.0046 (9)	0.0087 (9)	-0.0003 (9)
C1	0.0451 (13)	0.0523 (14)	0.0410 (14)	-0.0127 (11)	0.0065 (10)	-0.0011 (11)
C2	0.0433 (13)	0.0721 (18)	0.0647 (18)	-0.0037 (13)	0.0059 (12)	0.0003 (14)
C3	0.0598 (17)	0.0604 (17)	0.077 (2)	0.0031 (13)	0.0007 (14)	0.0091 (14)
C4	0.0644 (17)	0.0558 (16)	0.0639 (18)	-0.0124 (13)	0.0040 (13)	0.0122 (13)
C5	0.0488 (13)	0.0560 (15)	0.0517 (16)	-0.0076 (12)	0.0079 (11)	0.0042 (12)
C6	0.0437 (12)	0.0437 (13)	0.0363 (13)	-0.0070 (10)	0.0037 (10)	-0.0021 (10)
C7	0.0607 (15)	0.0494 (14)	0.0532 (16)	0.0033 (11)	0.0182 (12)	0.0002 (11)
C8	0.0467 (13)	0.0529 (15)	0.0520 (16)	0.0078 (11)	0.0087 (11)	0.0023 (12)
C9	0.0439 (13)	0.0620 (16)	0.0468 (15)	0.0083 (12)	0.0072 (11)	-0.0041 (12)
C10	0.0558 (14)	0.0502 (14)	0.0396 (14)	0.0047 (12)	0.0079 (11)	-0.0036 (11)
C11	0.0646 (16)	0.0695 (18)	0.0588 (17)	-0.0023 (14)	0.0101 (13)	-0.0005 (14)
C12	0.111 (3)	0.065 (2)	0.068 (2)	-0.0196 (18)	0.0262 (18)	-0.0009 (16)
C13	0.136 (3)	0.0563 (18)	0.062 (2)	0.024 (2)	0.019 (2)	0.0025 (15)
C14	0.084 (2)	0.084 (2)	0.070(2)	0.0360 (18)	0.0181 (16)	0.0020 (17)

015	0.0(20.(1.()	0.0((2.(17)	0.0(20.(10)	0.0122 (12)	0.0102 (12)	0.0040 (14)
	0.0630(16)	0.0662(17)	0.0630(18)	0.0133(13)	0.0183(13)	0.0049(14)
C16	0.0463 (14)	0.0723 (19)	0.0525 (17)	-0.0045 (13)	-0.000/(12)	0.0066 (14)
C17	0.0469 (13)	0.0599 (16)	0.0456 (15)	-0.0069 (11)	0.0074 (11)	0.0016 (12)
C18	0.0523 (15)	0.079 (2)	0.0481 (16)	-0.0104 (13)	0.0026 (12)	0.0011 (13)
C19	0.0606 (16)	0.079 (2)	0.0513 (17)	-0.0233 (14)	0.0168 (13)	-0.0140 (14)
C20	0.0667 (16)	0.0667 (17)	0.0547 (17)	-0.0143 (13)	0.0319 (14)	-0.0076 (14)
C21	0.0711 (17)	0.0628 (17)	0.0472 (16)	-0.0055 (13)	0.0145 (13)	-0.0017 (13)
C22	0.0612 (15)	0.0623 (17)	0.0468 (16)	-0.0076 (12)	0.0033 (12)	-0.0037 (13)
C23	0.106 (2)	0.071 (2)	0.090 (2)	-0.0212 (16)	0.0433 (18)	-0.0181 (16)
Geometric paran	neters (Å, °)					
Q1—C9		1 214 (2)	C10—	C11	1 372	(3)
02-C16		1 353 (3)	C11—	C12	1 373	(4)
02 - C8		1 429 (2)	C11—	H11	0.9300)
03-C16		1 209 (3)	C12-	C13	1 362	(4)
N1—N2		1 306 (2)	C12	H12	0.9300)
N1—C1		1.300(2) 1.375(3)	C12	C14	1 369	(4)
N2—N3		1 356 (2)	C13	H13	0.9300)
N3—C6		1 356 (3)	C14-	C15	1 381	(4)
N3—C7		1 446 (3)	C14—	H14	0.9300)
C1 - C6		1 385 (3)	C15	H15	0.9300	<i>,</i>)
C1 - C2		1 395 (3)	C16—	C17	1 466	(3)
$C^2 - C^3$		1 360 (3)	C17—	C22	1 386	(3)
С2—Н2		0.9300	C17—	C18	1 391	(3)
$C_3 - C_4$		1 405 (3)	C18-	C19	1 377	(3)
С3—Н3		0.9300	C18—	H18	0.9300)
C4-C5		1 367 (3)	C19—	C20	1 377	(3)
C4—H4		0.9300	C19—	H19	0.9300)
C5—C6		1 397 (3)	C20—	C21	1 386	(3)
С5—Н5		0.9300	C20	C23	1 503	(3)
C7—C8		1 522 (3)	C21	C22	1.303	(3)
С7—Н7А		0.9700	C21	H21	0.9300)
С7—Н7В		0.9700	C22	H22	0.9300)
C8—C9		1 507 (3)	C23—	H23A	0.9600)
C8—H8		0.9800	C23—	H23B	0.9600)
C9—C10		1.493 (3)	C23—	H23C	0.9600)
C10—C15		1.370 (3)				
С16—О2—С8		115.11 (18)	C10—	C11—C12	120.4	(2)
N2—N1—C1		107.75 (18)	C10—	С11—Н11	119.8	
N1—N2—N3		109.08 (18)	C12—	С11—Н11	119.8	
N2—N3—C6		109.84 (17)	C13—	C12—C11	120.2	(3)
N2—N3—C7		119.70 (18)	C13—	С12—Н12	119.9	
C6—N3—C7		130.46 (18)	C11—	С12—Н12	119.9	
N1—C1—C6		108.76 (19)	C12—	C13—C14	120.0	(3)
N1—C1—C2		130.1 (2)	C12—	С13—Н13	120.0	
C6—C1—C2		121.1 (2)	C14—	С13—Н13	120.0	
C3—C2—C1		116.8 (2)	C13—	C14—C15	119.8	(3)
С3—С2—Н2		121.6	C13—	С14—Н14	120.1	

C1—C2—H2	121.6	C15—C14—H14	120.1
C2—C3—C4	122.1 (2)	C10-C15-C14	120.2 (3)
С2—С3—Н3	119.0	C10-C15-H15	119.9
С4—С3—Н3	119.0	C14—C15—H15	119.9
C5—C4—C3	121.7 (2)	O3—C16—O2	120.8 (2)
С5—С4—Н4	119.1	O3—C16—C17	126.0 (2)
C3—C4—H4	119.1	O2-C16-C17	113.2 (2)
C4—C5—C6	116.3 (2)	C22—C17—C18	118.5 (2)
С4—С5—Н5	121.9	C22—C17—C16	122.5 (2)
С6—С5—Н5	121.9	C18—C17—C16	119.0 (2)
N3—C6—C1	104.56 (18)	C19—C18—C17	120.1 (2)
N3—C6—C5	133.4 (2)	C19—C18—H18	120.0
C1—C6—C5	122.0 (2)	C17—C18—H18	120.0
N3—C7—C8	113.69 (18)	C18—C19—C20	121.8 (2)
N3—C7—H7A	108.8	С18—С19—Н19	119.1
C8—C7—H7A	108.8	С20—С19—Н19	119.1
N3—C7—H7B	108.8	C19—C20—C21	117.4 (2)
С8—С7—Н7В	108.8	C19—C20—C23	122.0 (2)
H7A—C7—H7B	107.7	C21—C20—C23	120.6 (3)
O2—C8—C9	111.77 (18)	C22—C21—C20	121.8 (2)
O2—C8—C7	107.09 (18)	C22—C21—H21	119.1
C9—C8—C7	110.83 (19)	C20-C21-H21	119.1
O2—C8—H8	109.0	C21—C22—C17	120.3 (2)
С9—С8—Н8	109.0	C21—C22—H22	119.8
С7—С8—Н8	109.0	С17—С22—Н22	119.8
O1—C9—C10	121.4 (2)	С20—С23—Н23А	109.5
O1—C9—C8	120.0 (2)	С20—С23—Н23В	109.5
C10—C9—C8	118.51 (19)	H23A—C23—H23B	109.5
C15—C10—C11	119.3 (2)	С20—С23—Н23С	109.5
C15—C10—C9	121.4 (2)	H23A—C23—H23C	109.5
C11—C10—C9	119.2 (2)	H23B—C23—H23C	109.5
C1—N1—N2—N3	-0.6 (2)	C7—C8—C9—C10	-87.0 (2)
N1—N2—N3—C6	0.9 (2)	O1—C9—C10—C15	138.4 (2)
N1—N2—N3—C7	-179.93 (18)	C8—C9—C10—C15	-44.9 (3)
N2—N1—C1—C6	0.2 (2)	O1-C9-C10-C11	-38.5 (3)
N2—N1—C1—C2	-177.3 (2)	C8—C9—C10—C11	138.1 (2)
N1—C1—C2—C3	176.8 (2)	C15-C10-C11-C12	0.9 (4)
C6—C1—C2—C3	-0.4 (3)	C9—C10—C11—C12	177.9 (2)
C1—C2—C3—C4	-0.2 (4)	C10-C11-C12-C13	-1.4 (4)
C2—C3—C4—C5	0.9 (4)	C11—C12—C13—C14	0.6 (4)
C3—C4—C5—C6	-1.0 (3)	C12—C13—C14—C15	0.8 (4)
N2—N3—C6—C1	-0.7 (2)	C11—C10—C15—C14	0.5 (4)
C7—N3—C6—C1	-179.8 (2)	C9—C10—C15—C14	-176.4 (2)
N2—N3—C6—C5	176.6 (2)	C13-C14-C15-C10	-1.3 (4)
C7—N3—C6—C5	-2.4 (4)	C8—O2—C16—O3	-1.6 (3)
N1—C1—C6—N3	0.3 (2)	C8—O2—C16—C17	179.55 (18)
C2C1C6N3	178.1 (2)	O3—C16—C17—C22	-175.4 (3)
N1—C1—C6—C5	-177.4 (2)	O2—C16—C17—C22	3.4 (3)
C2—C1—C6—C5	0.3 (3)	O3—C16—C17—C18	3.5 (4)

C4 C5 C(N2	17((())	02 01(017 019	1777(0)
C4—C5—C6—N3	-1/6.6(2)	02 - C16 - C17 - C18	-1//./(2)
C4—C5—C6—C1	0.4 (3)	C22-C17-C18-C19	0.3 (3)
N2—N3—C7—C8	89.4 (2)	C16—C17—C18—C19	-178.6 (2)
C6—N3—C7—C8	-91.6 (3)	C17-C18-C19-C20	-0.2 (4)
C16—O2—C8—C9	-65.0 (2)	C18-C19-C20-C21	0.1 (3)
C16—O2—C8—C7	173.46 (19)	C18-C19-C20-C23	179.8 (2)
N3—C7—C8—O2	63.2 (2)	C19—C20—C21—C22	0.1 (4)
N3—C7—C8—C9	-58.9 (2)	C23—C20—C21—C22	-179.7 (2)
O2—C8—C9—O1	-29.6 (3)	C20—C21—C22—C17	0.0 (4)
C7—C8—C9—O1	89.8 (3)	C18—C17—C22—C21	-0.2 (4)
O2—C8—C9—C10	153.67 (18)	C16-C17-C22-C21	178.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C4—H4···O1 ⁱ	0.93	2.50	3.157 (3)	128
C7—H7A···N2 ⁱⁱ	0.97	2.59	3.560 (3)	176
C18—H18····O3 ⁱⁱⁱ	0.93	2.51	3.317 (3)	145

Symmetry codes: (i) x, -y, z+1/2; (ii) -x+1/2, -y+1/2, -z+2; (iii) -x, -y, -z+1.

